The aim of this project is to demonstrate a novel thin film solar cell design in a relevant industrial environment. This cell design is based on a rear PERC (passivated emitter and rear cell) concept, which has already been validated in the lab.

Website

Status

Running project

Period

-

This project´s goal is advanced materials and nanotechnologies for novel CIGS PV device architectures with efficiencies ≥ 23.0 %, thus beyond that of the current state-of-the-art technologies. The technology targets the BIPV sector and enables several innovative solutions for BIPV.

The novel functional materials and material combinations are:

  1. surface functionalized steel substrates
  2. nano-structuring strategies for optical management of rear contact layers
  3. passivation layers with nano-sized point openings
  4. ultra-thin CIGS thin film absorber layers

The concepts will be developed and established in production viable equipment. Additionally, this new design will also increase the system’s lifetime and materials resource efficiency, mainly due to the use of ultra-thin CIGS layers (less In and Ga), and barrier and passivation layers that hinder alkali metal movement. Hence, this project will lead to enhanced performance, but also yield and stability, while maintaining manufacturability.

The consortium includes SME’s and industrial partners positioned throughout the complete solar module manufacturing value chain. Their roles will be to develop and commercialize new equipment, products and/or services. The consortium already pioneered the proposed advanced material solutions up to technology readiness level (TRL) 4, and this project targets to bring these innovative concepts to TRL 6 in a low-cost demonstrator. The aim is to develop and validate innovative, economic and sustainable BIPV applications, as a near future high value market for the European PV industries. An exploitation strategy, developed with the support of TTO (www.tto.dk), identifying BIPV as the most promising market has been used to validate the choice of technologies and will be further developed during the course of the project.

EnergyVille's contribution

EnergyVille contributes to the project with its expertise in novel thin film solar cell design, which is developed further in the ERC project Uniting PV. In this case the EnergyVille PI has been pioneering the actual thin film solar cell design that will be scaled in ARCIGS-M.

bart vermang

Contact

Bart Vermang

Professor UHasselt, visiting professor imec