Reliability in photovoltaic (PV) systems is gaining importance because of various reasons; cost and applications. The Levelised Cost of Energy (LCOE) depends strongly on lifetime, while in Building Integrated PV (BIPV) for example, people expect lifetimes of 40 years and more.

The strength of the collaboration in EnergyVille is that all levels and elements of the PV system are covered in custom sample production, modelling and indoor custom-developed testing up to full size outdoor testing. Testing facilities cover many of the standards that are applied but are also developed custom in collaboration with industrial partners.

EnergyVille assists in validating reliability of industry’s new materials, technologies, topologies or solutions in the lab and in the field.

Lieve De Doncker


Lieve De Doncker

Business Developer Solar and Storage Materials at EnergyVille/UHasselt
Bart Onsia


Bart Onsia

Business Developer Solar, Batteries and Power to Molecules at EnergyVille/imec
Technical Notes


  • All current PV cell technologies can be integrated in test samples; crystalline silicon, thin film PV, perovskite solar cells, etc.
  • PV modules can be fabricated form single cell laminates up to full size PV modules, including of the shelf and/or custom materials.
  • Power Electronics can be stressed and monitored from small scale to medium scale applications
  • Custom building elements can be designed and/or tested in both in- and outdoor setups on the roof of EnergyVille
  • Mission profiles can be applied in modelling and in lab tests in order to determine degradation of specific components


  • Photovoltaic cells
  • Photovoltaic modules
  • PV power electronics
  • BIPV and Infrastructure Integrated PV (IIPV)


  • Companies that develop new cells and cell interconnection technologies
  • Producers of module materials (encapsulant, sealant, glass, coatings)
  • Development of new production technologies in module manufacturing
  • Construction companies looking to validate BIPV solutions
  • PV power plant owners, operators and energy providers looking for expertise in reliability and extended reliability testing and fault diagnostics
  • ….

Damp Heat

  • Multiple chamber sizes
  • Max. sample size: 1.1 x 1.7 m²
  • Chamber load: 100 kg or max. 10 modules
  • Damp heat testing at 5-90 ° C at 10-90 %RH

Thermal storage

  • Multiple chamber sizes
  • Sample size: max. 40 x 40 cm²
  • Chamber load: 50 kg
  • Temperature range: 50 - 250 °C

Thermal Cycling

  • Multiple chamber sizes
  • Max. Sample size: 1.1 x 1.7 m²
  • Chamber load: 100 kg or max. 10 modules
  • Thermal cycling: -60 - 150 °C

Potential Induced Degradation testing

  • Custom setup for small to large modules and up to 4000 V

Mechanical stress testing

  •  Static and dynamic loads on max. 40 x 40 cm² mini modules

Light soaking chambers

  • Multiple chamber sizes
  • Max. sample size: 1.1 x 1.7 m²
  • Chamber load: 100 kg or max. 10 modules
  • Thermal cycling -50 -120° C and damp heat 5-90 ° C at 10-90 %RH without illumination
  • Thermal cycling -20 -85° and damp heat 5-90 ° C at 10-85 %RH with illumination
  • Light intensity and wavelength: 150 W/m2 at 250- 400 nm wavelength

Infrared imaging equipment for high speed failure detection:

  • Detector 640 x 512 pixels
  • High spatial resolution: <3 μm with x5 objective
  • High NETD <20 mK
  • High sample rate up to 5000 samples/s